互联网品牌营销落地全网营销特训营互联网品牌咨询互联网品牌推广
品牌咨询专线:18922358791
×

加入圈子

当前位置: 首页>品牌智库>数据中心> Yoshua Bengio:Attention 让深度学习取得成功(英文版)

Yoshua Bengio:Attention 让深度学习取得成功(英文版)

日期:   作者:帷幄咨询官网:品牌营销策划|数字营销案例|互联网品牌策划|品牌营销策划案例   阅读次数:362
Yoshua Bengio,电脑科学家,毕业于麦吉尔大学,在MIT和AT&T贝尔实验室做过博士后研究员,自1993年之后就在蒙特利尔大学任教,与 Yann LeCun、 Geoffrey Hinton并称为“深度学习三巨头”,也是神经网络复兴的主要的三个发起人之一,在预训练问题、为自动编码器降噪等自动编码器的结构问题和生成式模型等等领域做出重大贡献。他早先的一篇关于语言概率模型的论文开创了神经网络做语言模型的先河,启发了一系列关于 NLP 的文章,进而在工业界产生重大影响。此外,他的小组开发了 Theano 平台。


Deep learning of seman/cs for natural language


Machine Learning, AI & No Free Lunch


Bypassing the curse of dimensionality


Progress in Deep Learning Theory


Exponential advantage of distributed representations


Exponential advantage of distributed representations


Exponential advantage of depth


Exponential advantage of depth


A Myth is Being Debunked: Local Minima in Neural Nets


Saddle Points


Why N-grams have poor generalization


Neural Language Models: fighting one exponential by another one!


The Next Challenge: Rich Semantic Representations for Word Sequences


Attention Mechanism for Deep Learning


Applying an attention mechanism to


End-to-End Machine Translation


2014: The Year of Neural Machine Translation Breakthrough


Encoder-Decoder Framework


Bidirectional RNN for Input Side


Attention: Many Recent Papers


Soft-Attention vs Stochastic Hard-Attention


Attention-Based Neural Machine Translation


Predicted Alignments


En-Fr & En-De Alignments


Improvements over Pure AE Model


End-to-End Machine Translation with Recurrent Nets and Attention Mechanism


IWSLT 2015 – Luong & Manning (2015) TED talk MT, English-German


Image-to-Text: Caption Generation with Attention


Paying Attention to Selected Parts of the Image While Uttering Words


Speaking about what one sees


Show, Attend and Tell: Neural Image Caption Generation with Visual Attention


The Good


And the Bad


Interesting extensions


Multi-Lingual Neural MT with Shared Attention Mechanism


Multi-Lingual Neural MT with Shared Attention Mechanism


Character-Based Models


Experiments on Character-Based NMT


Experiments on Character-Based NMT


Attention Mechanisms for Memory Access


Large Memory Networks: Sparse Access Memory for Long-Term Dependencies


Delays & Hierarchies to Reach Farther


Ongoing Project: Knowledge Extraction


The Next Big Challenge: Unsupervised Learning


Conclusions

• Theory for deep learning has progressed substanFally on several fronts: why it generalizes beder, why local minima are not the issue people thought, and the probabilisFc interpretaFon of deep unsupervised learning.
• AdenFon mechanisms allow the learner to make a selecFon, sol or hard
• They have been extremely successful for machine translaFon and capFon generaFon
• They could be interesFng for speech recogniFon and video, especially if we used them to capture mulFple Fme scales
• They could be used to help deal with long-term dependencies, allowing some states to last for arbitrarily long



帷幄咨询是我国专注互联网品牌营销落地执行的第三方服务机构;主要服务项目有:全网营销特训营、互联网品牌营销微咨询、互联网思维培训、互联网实效性定制培训系统;助力传统企业互联网品牌转型升级,让互联网思维更加落地,促进线上业务更快发展。

关注你附近
下一篇:工信部 CESI:2016虚拟现实产业发展白皮书
上一篇:清科观察:《2016工业4.0海外投资报告》
分享到:微信QQ空间新浪微博腾讯微博人人网

你可能喜欢的文章: